

Gentamicin: A Novel Approach to Cancer Therapy

M. Karthikeyan* and B.M. Praveen

Srinivas University, Mukka, Mangaluru, Karnataka, India.

Article Info

Received: 07-01-2020

Revised: 16-02-2020

Accepted: 14-03-2020

ABSTRACT:

The function of antibiotics in the initiation, progression, and therapy of cancer is the subject of this extensive analysis. Some of the key processes that lead to cancer include an unregulated cell cycle, unending self-renewal, and the ability for cancer stem cells to proliferate. The review emphasises the positive outcomes of antibiotic-assisted cancer therapy, including an improved prognosis, fewer side effects, faster wound healing, less infection, and enhanced immunological competence. Nevertheless, antibiotics may have a major influence on cancer therapy via

microbial imbalance, immune system suppression, and inflammation. Additionally, the paper delves into Gentamicin's impact on sphingomyelin metabolism, its potential as a cancer treatment, and its role as a sensitising agent for cancer chemotherapy. According to the study, Gentamicin has potential as a sensitising agent, but it may only be effective against certain cancers and medication combinations when used as an anticancer agent. To delve further into the connection between Gentamicin therapy and mRNA and protein levels, more studies are required.

Keywords: Metabolism of Sphingomyelin; Anticancer Agents; Gentamicin.

INTRODUCTION:

Cancer is a common and serious disease that threatens people's lives on a regular basis. Its primary tools, according to the present state of cell research, are the abnormal proliferation and migration of cells characterised by an unregulated cell cycle, continuous self-renewal, and the spread of disease-related immune cells. 1. Every year, more than 8,000,000 people lose their lives to cancer, placing a tremendous strain on global economic and social development. Medical procedures, radiation, chemotherapy, immunotherapy, and targeted treatment² are now weapons in the fight against tumours. Surgical removal of cancerous

tumours has been the only treatment option for cancer for generations. Due to the widespread light damage to the body, radiotherapy is used to treat around half of all cancer patients. However, serious tumours that are localised to a single organ still need surgery and radiation treatment. 2. Chemotherapy and targeted treatments, which eliminate cancer cells that have spread to other parts of the body, have assumed a more central role in disease treatment since our understanding of cancer as an infectious disease has evolved. However, the potential genotoxicity or acquired resistance to these drugs has started to

pose serious challenges to patient care.

organisms (including fungi, bacteria, and other tiny critters), higher plants, and animals that battle microbes or other pathogens and impede the development of other cells. Fourth, anti-toxins may promote cancer cell death, halt disease progression, and stop cancer cells from spreading, according to studies. Because of this, anti-toxins are being used more and more to help with illness treatment. 5. Nevertheless, in addition to harmful microbes, the administration of anti-toxins may also inadvertently destroy beneficial bacterial communities, such as *Lactobacillus* and *Bifidobacterium*. 6. In the fight against illness, the gut microbiota is an essential player. So, anti-toxins not only disrupt the microbiota, but they also lower the body's resistance limit and promote aggravation, which may ultimately influence and lessen the effectiveness of cancer therapy. 7. Considering the pros and cons of anti-infection agents in cancer treatment advancement, this survey aims to investigate the role of anti-toxins in cancer treatment and improvement. The goal is to provide a better framework for future use of anti-toxins in cancer illness therapy. Positive outcomes from antibiotic-based cancer treatments

Disease therapy with anti-infection medicines has beneficial benefits, such as improving guess, reducing side effects, preventing or reducing wound contamination, speeding up damage healing, and working on safe capabilities. Additionally, adjuvant antimicrobials may improve the body's defence mechanisms, launch an attack on illness, improve overall health, and prevent cancer from returning or spreading. Additionally, anti-infective drugs have anticancer effects via mechanisms such as those that inhibit proliferation, promote cell death, and inhibit epithelial-mesenchymal transition (EMT) abilities.

However, it should be noted that the use of antimicrobials may disrupt microbial balance, reduce immune tolerance, and increase irritation, all of which can have a major impact on disease therapies. Neutral sphingomyelinase, gentamicin-induced decline of PTEN, and vascular deathreceptor An essential component in cell signalling, differentiation, proliferation, apoptosis, and cancer, sphingomyelin (SM) is a bioactive sphingolipid. Enzymes and second messengers, including as ceramide and DAGs, are involved in this molecule's metabolic pathway, which aims to keep phosphatidylcholine (PC) levels balanced. One enzyme, sphingomyelinase, hydrolyzes SM to produce ceramide and phosphocholine; another, SM-synthase, uses DAG as a mediator to create ceramide from PC's phosphocholine. Multiple isoforms of sphingomyelinase hydrolyze SM9, which has a role in a variety of cellular events, including tumour cell death and cancer growth. The tumor-suppressing gene PTEN interacts with the vitamin D receptor VDR to regulate cell growth and division. When they work in tandem, they are essential for many cellular functions, including carcinogenesis. The neutral sphingomyelinase enzyme also plays a role in sphingolipid metabolism. Has been associated with tumour cell apoptosis and cancer progression9. Gentamicin reduced PTEN, VDR, and neutral sphingomyelinase levels in NCI N87 cancer cells. Inhibition of cell growth, decreased cell count and viability, and an increase in apoptotic cytotoxicity were all symptoms of this downregulation. Gentamicin may influence the expression of these molecules that contribute to cancer growth, according to these data.9. Acid sphingomyelinase upregulation An enzyme called acid sphingomyelinase

has been linked to cancer progression and tumour cell death caused by apoptosis. In terms of preventing anticancer treatments from being successful and transforming cancer susceptibility, it plays a key role. Since its levels rise following Gentamicin administration to cancer cells, this raises the possibility of using this enzyme in the creation of therapeutic treatments against malignant cells.⁹. Progress in Gentamicin's Anticancer Action Gentamicin may inhibit the growth of human stomach cancer cells, according to one experiment. As the dosage was raised, there was a marked inhibition of cell growth, leading to a decline in cell viability and eventual cell death. Additionally, gentamicin therapy resulted in the downregulation of some genes and proteins linked to cancer cell aggressiveness and proliferation. Based on these results, Gentamicin shows promise as a therapeutic agent for the treatment of cancer. The genes CDKN1A and CDKN1B code for proteins that have a role in controlling the cell cycle. Important regulators of cell cycle progression, their products are cyclin-dependent kinase inhibitors. This protein family is involved in controlling cell cycle progression by preventing cyclin-CDK complexes from completing their normal activities. Importantly, in the setting of cancer therapy, upregulation of CDKN1A and CDKN1B may cause cell cycle arrest and suppression of cell proliferation⁹. Changes in Gentamicin The Metabolism of Sphingomyelin Analysing and combining sphingomyelin, a bioactive sphingolipid, is part of sphingomyelin digestion. The intricate structure includes many proteins that are responsible for maintaining the balance of sphingomyelin and phosphatidylcholine. Significant roles in cell flagging, proliferation, separation, and apoptosis are played by auxiliary

mediators produced by this cycle, such as ceramide and diacylglycerol. Several isoenzymes of sphingomyelinase (SMase) finish the decomposition of sphingomyelin, while sphingomyelin synthase is an integral part of its synthesis. The impact of Gentamicin on altering sphingomyelin digestion was also highlighted in the concentrate; this is relevant to cancer treatment⁹. The study found that sphingomyelin digestion was altered by Gentamicin therapy. Above all, it caused a decrease in neutral sphingomyelinase (nSMase) and an increase in acidic sphingomyelinase (aSMase) quality expression. The putative mechanisms of action of Gentamicin in the therapy of malignant growth are illuminated by these developments in sphingomyelin digestion, which are associated with the inhibition of disease cell development.

Gentamicin's possible target, aSMase According to the review, one potential target of Gentamicin (GM) in disease cells is acid sphingomyelinase (aSMase). Based on the results, aSMase may be a specific target of GM in the context of illness therapy, as GM specifically increased its quality and protein articulation in cancer growing cells. Attributes linked to cell cycle regulation and apoptosis include CDKN1B and GADD45A. 1. Genomic damage and other stress signals associated with cell death and development may activate GADD45A. The CDKN1B gene genes for a protein that regulates cell cycle progression 110–12 by binding to and repressing the activity of cyclin-subordinate kinases.

Both CDKN1B and GADD45A overexpression may have different effects on cell cycle and cell death. In some cell lines, overexpression of GADD45A inhibits cell proliferation due to GADD45A articulation occurring

independently of p53 status 1. On the other hand, blocking the activity of cyclin-dependent kinases is one mechanism by which overexpression of CDKN1B might induce cell cycle arrest^{13,14}.

At the 24-hour point in the culture, the quality of the articulation was altered by 2 mM GM in proportion to the alterations in SM digestion. In SUP-T1 cells, GAPDH, B2M, CDKN1A, and CDKN1B were down-communicated, indicating that the quality articulation is similar to that of untreated lymphocytes. CDKN1B was overexpressed and GAPDH, B2M, and CDKN1A outflow were restored to lymphocyte levels (values close to solidarity) after GM treatment. The fact that the drug somewhat increased the declaration of these characteristics after treatment was finished on lymphocytes provided further evidence of the specificity of GM's action. Interestingly, GADD45A was

CONCLUSION

As a sensitising agent for cancer treatment, gentamicin shows promise. In vitro studies with NSCLC cells have shown that it enhances the efficacy of some anticancer medications, including vinblastine, camptothecin, and digitoxin. It should be noted that not all anticancer

ACKNOWLEDGMENT

A promising use of gentamicin is as a sensitising agent in cancer therapy. Some anticancer drugs, such as vinblastine, camptothecin, and digitoxin, are made more effective by its use, according to in vitro research with NSCLC cells. Not all cancer treatments have the ability to make non-small cell lung cancer cells

found to be overexpressed in lymphoma cells, while GM failed to trigger any alterations. The future of research into the relationship between mRNA and protein content is exciting. There is hope for gentamicin's future as a sharpening specialist in cancer chemotherapy. Consequently, the viability of some anticancer drugs, such as vinblastine, camptothecin, and digitoxin, in cells derived from non-small cell lung cancer (NSCLC). The effect of gentamicin's sharpness is contingent upon the responsive oxygen species (ROS) response it induces. Whatever the situation may be, keep in mind that gentamicin does not hone NSCLC cells to every anticancer drug. Therefore, while it proves to be an effective sharpening specialist, its use as an anticancer specialist may be limited to certain pharmaceutical combinations and kinds of cancer.

medicines can sensitise NSCLC cells to gentamicin. Thus, while it has potential as a sensitizer, its use as an anticancer agent could be restricted to certain medication combinations and cancer types.

ACKNOWLEDGMENT

more sensitive to gentamicin. So, while it might work as a sensitizer, it could only be effective against particular cancers and drug combinations as an anticancer agent.

REFERENCES

First author: Rajaraman R., second author: Guernsey DL. On cancer stem cells, ageing, new cell formation, and

self-renewal. This article is based on a 2006 publication in Cancer Cell International with the DOI:

10.1186/1475-2867-6-25.

Second, Kanady KE, Shipley WU, Zietman AL, Kaufman DS, Althausen AF, and Heney NM. II. Strategies for treating invasive bladder cancer that includetransurethral surgery, chemotherapy, and radiation treatment, with the goal of safely preserving the bladder. The article is published in the Semin Surg Oncol journal and the page numbers range from 359 to 364. <359::aid-ssu10>doi:10.1002/ (sici)1098-2388(199709/10)13:5:3.0 to thepoweroftwo.

3. Hacker U. and Lordick F. I am now undergoing chemotherapy and targeted treatment. Edited by Kauczor HU and Bäuerle T. Imaging of Complications and Toxicity after Tumour Therapy. Radiology in the medical field. Published by Springer in 2014 with the DOI10.1007/174_2014_1040.

Javier Barrios-González and Alejandro Mejía. The Synthesis of Antibiotics and Other Secondary Metabolites of Economical Value. Vol. 1, edited by Pandey A, Soccol CR, and Larroche C. Advancements in Solid-state Fermentation Recently. Publication date: 2008 by Springer in New York, NY. DOI: 10.1007/978-0-387-75213-6_14.

Fifthly, Xia, Yang, Liu, and others. Epithelial ovarian cancer cells that have CHAF1A overexpressed are more likely to divide and less likely to die. Biochemical and Biophysical Research Communications 486(1):191-197, 2017. Bibcode: 2017 bbrc.0326.

6. Guterman G. The composition and succession of the human gut microflora, including Lactobacillus and Bifidobacterium. Issues in Intest Microbiology, 2001, 2(2), 43–53.

7. Hernandez DL. Letter to the Editor: Epigenetic Regulation, Gut Microbiota, and Antibiotic Use and the Risk of Type 2 Diabetes. 2016;101(5):L62-L63. doi:10.1210/jc.2016-1151. Published in the Journal of Clinical Endocrinology and Metabolic Research.

Antibiotics as a cancer treatment: pros and cons (Gao Y, Shang Q, Li W, et al., 2008). “Journal of Cancer” (2020, 11(17):5135-5149). URL: 10.7150/jca.47470. 9. The Case of the Human Gastric Cancer NCI-N87 Cells Exposes Gentamicin to Acid Sphingomyelinase in Cancer, by Alba, Cataldi, Ceccarini, et al. Global Journal of Molecular Sciences, 2019;20(18):4375. doi:10.3390/ijms20184375.

Number ten: Kleinsimon, Longmuss, Rolff, et al. To further inhibit the STAT3 pathway, GADD45A and CDKN1A play a role in the cell cycle modulatory effects of viscumTT and apoptosis. Publication date: 2018-01-08. DOI: 10.1038/s41598-018-24075-x.

Eleven. GADD45 in Stress Signalling, Cell Cycle Regulation, and Cell Death (Humayun A, Fornace AJ). With Liebermann DA and Zaidi MR at the helm, Gadd45 Vol. 1360 of Advances in Experimental Medicine and Biology discusses stress sensor genes. Publication year: 2022 by Springer Cham. DOI: 10.1007/978-3-030-94804-7_1. 12. The authors include Casteldi, Codini, Cascianelli, and others. Dexamethasone Rests in the Nuclear Lipid Microdomain to Reduce Cell Proliferation. Journal of Molecular Biology and Structural Biology, 2014, 15, 19832–19846, doi:10.3390/409. In Biosci., Biotech. Res. Asia, Karthikeyan and Preveen (2024) publish in volume 21, issue 2, pages 405–409.

13. Patal K, Murray MG, and Whelan KA. ijms151119832. Roles for GADD45 in Development and Cancer. With Liebermann DA and Zaidi MR at the helm, Gadd45 Genes which act as stress sensors. Volume 1360 of the Advances in Experimental Biology and Medicine series. De Santi M, Galluzzi L, Lucarini S, et al. Published by Springer in 2022

with the DOI 10.1007/978-3-030-94804-7_2. Whether the breast cancer cell line is oestrogen receptor positive or triple-negative, the indole-3-carbinol cyclic tetrameric derivative CTet may decrease cell growth by increasing the expression of p21/CDKN1A. Cuccarese MF, Singh A, Amiji M, and O'Doherty GA. Breast Cancer Research. 2011;13:R33. doi:10.1186/bcr2855. 15. An innovative use of gentamicin in the process of enhancing the susceptibility of NCI-H460 lung cancer cells to different anticancer drugs via ROS-mediated induction. Citation: ACS Chem Biol. 2013;8(12):2771-2777. doi:10.1021/cb4007024.